Integrable N -particle Hamiltonians with Yangian or reflection algebra symmetry

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2004 J. Phys. A: Math. Gen. 376285
(http://iopscience.iop.org/0305-4470/37/24/007)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.91
The article was downloaded on 02/06/2010 at 18:17

Please note that terms and conditions apply.

Integrable N-particle Hamiltonians with Yangian or reflection algebra symmetry

V Caudrelier and N Crampé
Laboratoire d'Annecy-le-Vieux de Physique Théorique, LAPTH, CNRS, UMR 5108, Université de Savoie, BP 110, F-74941 Annecy-le-Vieux Cedex, France

Received 15 March 2004
Published 2 June 2004
Online at stacks.iop.org/JPhysA/37/6285
doi:10.1088/0305-4470/37/24/007

Abstract

We use the Dunkl operator approach to construct one-dimensional integrable models describing N particles with internal degrees of freedom. These models are described by a general Hamiltonian belonging to the centre of the Yangian or the reflection algebra, which ensures that they admit the corresponding symmetry. In particular, the open problem of the symmetry is answered for the B_{N}-type Sutherland model with spin and for a generalized B_{N}-type nonlinear Schrödinger Hamiltonian.

PACS numbers: $02.20 . \mathrm{Uw}, 03.65 . \mathrm{Fd}$
Mathematics Subject Classification: 70H06, 81R12, 81R50

Introduction

The introduction of internal degrees of freedom in an increasing number of one-dimensional quantum integrable systems has proved to be fruitful in various physical and mathematical investigations. This is well illustrated in the study of symmetries. In particular, the Yangian symmetry was exhibited in the A_{N} Sutherland model with spin [1], the A_{N} confined Calogero model with spin [2] or the quantum nonlinear Schrödinger (NLS) equation [3, 4]. This in turn allows us to find the spectrum and degeneracies.

The main idea of this paper is to generalize the Dunkl operator approach of [1] in order to construct a general N-body Hamiltonian which possesses the reflection algebra [5] as symmetry algebra. A direct consequence is the integrability of the system described by this general Hamiltonian. Taking a particular case, we answer the question of the symmetry of the B_{N} Sutherland model with spin. In the same way, we exhibit the symmetry of a generalized B_{N}-type NLS Hamiltonian. With the same procedure, we also construct a general N-body integrable Hamiltonian with Yangian symmetry from which we recover the known cases of NLS and A_{N} Sutherland model with spin.

After recalling some known mathematical background needed in the construction of the central elements of the Yangian [6] of $g l(n), Y(n)$, and of the reflection algebra, $\mathcal{B}(n)$, in section 1 , we give a realization of these algebras in terms of transfer matrices and generators of the extended degenerate affine Hecke algebra, $\mathcal{A}(N)$. Next, we prove the main theorems of section 2 which provide another realization for each algebra $\mathcal{B}(n)$ and $Y(n)$ in terms of a projector specifying the physical properties of the wavefunctions occurring when we represent our setup in section 3 . We identify a central element used in section 3 (resp. section 4) to construct the general one-dimensional N-particle Hamiltonian for which we prove integrability and reflection algebra (resp. Yangian) symmetry. This is done by representing $\mathcal{A}(N)$ in terms of operators (in particular Dunkl operators) acting on the space of wavefunctions. Then, we particularize the former general Hamiltonian and conclude on the symmetry of generalizations of NLS and Sutherland models.

1. Central elements of $Y(n)$ and $\mathcal{B}(n)$

We deal with the multiple tensor products $\left(\operatorname{End}\left(\mathbb{C}^{n}\right)\right)^{\otimes m}$ where $m \in \mathbb{Z}_{\geqslant 0}$ will be the number of copies necessary for the equations to make sense. For $A \in \operatorname{End}\left(\mathbb{C}^{n}\right)$ and $k \in\{1, \ldots, m\}$, we define A_{k} by

$$
\begin{equation*}
A_{k}=1^{\otimes k-1} \otimes A \otimes 1^{\otimes m-k} \in\left(\operatorname{End}\left(\mathbb{C}^{n}\right)\right)^{\otimes m} \tag{1.1}
\end{equation*}
$$

1.1. Yangian $Y(n)$

The Yangian of $g l_{n}$ [6], $Y(n)$, is the complex associative algebra, generated by the unit and the elements $\left\{t_{i j}^{(k)} \mid 1 \leqslant i, j \leqslant n ; k \in \mathbb{Z}_{>0}\right\}$ gathered in the formal series

$$
\begin{equation*}
t_{i j}(u)=\delta_{i j}+\lambda \sum_{k \in \mathbb{Z}_{>0}} t_{i j}^{(k)} u^{-k} \in Y(n)\left[\left[u^{-1}\right]\right] \tag{1.2}
\end{equation*}
$$

subject to the defining relations

$$
\begin{equation*}
(u-v)\left[t_{i j}(u), t_{k l}(v)\right]=\lambda\left(t_{k j}(u) t_{i l}(v)-t_{k j}(v) t_{i l}(u)\right) \tag{1.3}
\end{equation*}
$$

where λ is the parameter of deformation of the Yangian. Let $E_{i j}$ be the elementary matrix with entry 1 in row i and column j and zero elsewhere and $T(u)$ be defined by

$$
\begin{equation*}
T(u)=\sum_{i, j=1}^{n} t_{i j}(u) \otimes E_{i j} \in Y(n)\left[\left[u^{-1}\right]\right] \otimes \operatorname{End}\left(\mathbb{C}^{n}\right) \tag{1.4}
\end{equation*}
$$

Then the relations (1.3) are equivalent to the $R T T$ relation [7]

$$
\begin{equation*}
R_{12}(u-v) T_{1}(u) T_{2}(v)=T_{2}(v) T_{1}(u) R_{12}(u-v) \tag{1.5}
\end{equation*}
$$

where
$R_{12}(u)=1 \otimes 1-\lambda \frac{P_{12}}{u} \quad P_{12}=\sum_{i, j=1}^{n} E_{i j} \otimes E_{j i} \in \operatorname{End}\left(\mathbb{C}^{n}\right) \otimes \operatorname{End}\left(\mathbb{C}^{n}\right)$.
P_{12} is the permutation operator, i.e. $P_{12} v \otimes w=w \otimes v$, with $v, w \in \mathbb{C}^{n}$.
This R-matrix, called the Yang matrix, satisfies the following properties:
$R_{12}(u-v) R_{13}(u) R_{23}(v)=R_{23}(v) R_{13}(u) R_{12}(u-v) \quad$ (Yang-Baxter equation)
$R_{12}(u) R_{12}(-u)=\frac{u^{2}-\lambda^{2}}{u^{2}} 1 \otimes 1 \quad$ (unitarity relation).

Let A_{m} be the antisymmetrizer operator in $\left(\mathbb{C}^{n}\right)^{\otimes m}$ i.e.

$$
\begin{equation*}
A_{m}\left(e_{i_{1}} \otimes \cdots \otimes e_{i_{m}}\right)=\sum_{\sigma \in \mathfrak{S}_{m}} \operatorname{sgn}(\sigma) e_{i_{\sigma(1)}} \otimes \cdots \otimes e_{i_{\sigma(m)}} \tag{1.9}
\end{equation*}
$$

where $\left\{e_{i} \mid 1 \leqslant i \leqslant n\right\}$ is the canonical basis of \mathbb{C}^{n} and $1 \leqslant i_{1}, \ldots, i_{m} \leqslant n$. One can show (see, e.g., [8]) that the following identities hold:

$$
\begin{equation*}
A_{m} T_{1}(u) \cdots T_{m}(u-m \lambda+\lambda)=T_{m}(u-m \lambda+\lambda) \cdots T_{1}(u) A_{m} . \tag{1.10}
\end{equation*}
$$

For $m=n, A_{n}$ becomes a one-dimensional operator in $\left(\mathbb{C}^{n}\right)^{\otimes n}$ and the element (1.10) is then equal to A_{n} times a scalar series with coefficients in $Y(n)$ called the quantum determinant. This reads

$$
\begin{equation*}
A_{n} q \operatorname{det} T(u)=A_{n} T_{1}(u) \cdots T_{n}(u-n \lambda+\lambda) . \tag{1.11}
\end{equation*}
$$

A well-known result (see, e.g., [9]) is that the coefficients of qdet $T(u)$ generate the centre of $Y(n)$.

1.2. Reflection algebra $\mathcal{B}(n)$

Let $Q \in \operatorname{End}\left(\mathbb{C}^{n}\right)$ be an operator such that $Q^{2}=1$. Let us introduce $\widetilde{\mathcal{B}}(n)$ the complex associative algebra generated by the unit and the elements $\left\{\tilde{s}_{i j}^{(k)} \mid 1 \leqslant i, j \leqslant n ; k \in \mathbb{Z}_{\geqslant 0}\right\}$ gathered in the formal series

$$
\begin{equation*}
\tilde{s}_{i j}(u)=\sum_{k \in \mathbb{Z} \geqslant 0} \tilde{s}_{i j}^{(k)} u^{-k} \in \widetilde{\mathcal{B}}(n)\left[\left[u^{-1}\right]\right] . \tag{1.12}
\end{equation*}
$$

The defining relations are given by the reflection equation [5, 10]

$$
\begin{equation*}
R_{12}(u-v) \widetilde{S}_{1}(u) Q_{1} R_{12}(u+v) Q_{1} \widetilde{S}_{2}(v)=\widetilde{S}_{2}(v) Q_{1} R_{12}(u+v) Q_{1} \widetilde{S}_{1}(u) R_{12}(u-v) \tag{1.13}
\end{equation*}
$$

where

$$
\begin{equation*}
\widetilde{S}(u)=\sum_{i, j=1}^{n} \tilde{s}_{i j}(u) \otimes E_{i j} \in \widetilde{\mathcal{B}}(n)\left[\left[u^{-1}\right]\right] \otimes \operatorname{End}\left(\mathbb{C}^{n}\right) \tag{1.14}
\end{equation*}
$$

There exists a connection between $Y(n)$ and $\widetilde{\mathcal{B}}(n)$.
Theorem 1.1. [5] Let

$$
B(u)=\sum_{k \geqslant 0} \frac{B^{(k)}}{u^{k}} \in \operatorname{End}\left(\mathbb{C}^{n}\right)\left[\left[u^{-1}\right]\right]
$$

satisfy the relation (1.13). Then, the map

$$
\begin{align*}
& \phi: \widetilde{\mathcal{B}}(n) \longmapsto Y(n) \\
& \widetilde{S}(u) \longrightarrow S(u) \equiv T(u) B(u) Q T^{-1}(-u) Q \tag{1.15}
\end{align*}
$$

defines an algebra homomorphism.
In this paper, we consider the reflection algebra $\mathcal{B}(n)$, subalgebra of $Y(n)$, defined as the image of $\widetilde{\mathcal{B}}(n)$ by ϕ.

By the same procedure as in [11], one can define the Sklyanin determinant

$$
\begin{align*}
A_{n} \operatorname{sdet} S(u)= & A_{n} \prod_{1 \leqslant k \leqslant n-1}^{\longrightarrow}\left(S_{k}(u+\lambda-k \lambda) R_{k, k+1}\right. \\
& \left.\times(2 u+\lambda(1-2 k)) \cdots R_{k, n}(2 u+\lambda(2-k-n))\right) S_{n}(u+\lambda-n \lambda) \tag{1.16}
\end{align*}
$$

where the product is ordered i.e. $\vec{\prod}_{1 \leqslant k \leqslant n-1} X_{k}=X_{1} \cdots X_{n-1}$. Following [11], one can express the Sklyanin determinant in terms of the quantum determinant

$$
\begin{equation*}
\operatorname{sdet} S(u)=\theta(u) q \operatorname{det} T(u)(q \operatorname{det} T(-u+n \lambda-\lambda))^{-1} \tag{1.17}
\end{equation*}
$$

where $\theta(u)=\operatorname{sdet} B(u) \in \mathbb{C}\left[\left[u^{-1}\right]\right]$.
From theorem 1.1 and relation (1.17), one deduces that the coefficients of the Sklyanin determinant belong to the centre of $\mathcal{B}(n)$, which will be fundamental in establishing the reflection symmetry.

2. Realizations of $Y(n)$ and $\mathcal{B}(n)$

This section is the first step towards our goal. By realizing the above algebras, we will identify what will be interpreted as Hamiltonians in the following sections.

2.1. Extended degenerate affine Hecke algebra

Let $N \in \mathbb{Z}_{\geqslant 2}$. The extended degenerate affine Hecke algebra, $\mathcal{A}(N)$, is the complex associative algebra generated by the unit and three sets of elements denoted $\left\{d_{i} \mid 1 \leqslant i \leqslant N\right\},\left\{\mathcal{P}_{i, i+1} \mid 1 \leqslant\right.$ $i \leqslant N-1\}$ and $\left\{\mathcal{Q}_{i} \mid 1 \leqslant i \leqslant N\right\}$ subject to the defining relations

$$
\begin{align*}
& \mathcal{P}_{i, i+1} \mathcal{P}_{i+1, i+2} \mathcal{P}_{i, i+1}=\mathcal{P}_{i+1, i+2} \mathcal{P}_{i, i+1} \mathcal{P}_{i+1, i+2} \tag{2.1}\\
& \mathcal{P}_{i, i+1}^{2}=1 \tag{2.2}\\
& \mathcal{P}_{i, i+1} d_{k}= \begin{cases}d_{k} \mathcal{P}_{i, i+1} & k \neq i, i+1 \\
d_{i+1} \mathcal{P}_{i, i+1}+\beta & k=i \\
d_{i} \mathcal{P}_{i, i+1}-\beta & k=i+1\end{cases} \tag{2.3}\\
& {\left[d_{i}, d_{j}\right]=0} \tag{2.4}\\
& \mathcal{Q}_{i}^{2}=1 \tag{2.5}\\
& \mathcal{Q}_{i} \mathcal{Q}_{j}=\mathcal{Q}_{j} \mathcal{Q}_{i} \tag{2.6}\\
& \mathcal{Q}_{i} \mathcal{P}_{k, k+1}= \begin{cases}\mathcal{P}_{k, k+1} \mathcal{Q}_{i} & i \neq k, k+1 \\
\mathcal{P}_{k, k+1} \mathcal{Q}_{k+1} & i=k \\
\mathcal{P}_{k, k+1} \mathcal{Q}_{k} & i=k+1\end{cases} \tag{2.7}
\end{align*}
$$

$$
\mathcal{Q}_{i} d_{k}= \begin{cases}d_{k} \mathcal{Q}_{i} & k<i \\ -d_{i} \mathcal{Q}_{i}+\beta \sum_{j=i+1}^{N} \mathcal{P}_{i j}\left(\mathcal{Q}_{i}+\mathcal{Q}_{j}\right)+b & k=i \\ d_{k} \mathcal{Q}_{i}+\beta \mathcal{P}_{i k}\left(\mathcal{Q}_{i}-\mathcal{Q}_{k}\right) & k>i\end{cases}
$$

where

$$
\begin{equation*}
\beta \in \mathbb{C} \quad b \in \mathbb{C} \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{P}_{i j}=\mathcal{P}_{i, i+1} \mathcal{P}_{i+1, i+2} \cdots \mathcal{P}_{j-2, j-1} \mathcal{P}_{j-1, j} \mathcal{P}_{j-2, j-1} \cdots \mathcal{P}_{i+1, i+2} \mathcal{P}_{i, i+1} . \tag{2.10}
\end{equation*}
$$

The commutation relations (2.1)-(2.8) were obtained in [12] for a particular representation but here we set them as abstract algebraic relations.

Let us note that the subalgebra of $\mathcal{A}(N)$ generated by $\left\{d_{i} \mid i=1, \ldots, N\right\}$ and $\left\{\mathcal{P}_{i, i+1} \mid i=\right.$ $1, \ldots, N-1\}$ satisfying relations (2.1)-(2.4) is the degenerate affine Hecke algebra denoted $\widetilde{\mathcal{A}}(N)$ first introduced in [13].

2.2. Transfer matrix

In order to realize $Y(n)$ and $\mathcal{B}(n)$ in terms of the elements of $\mathcal{A}(N)$, we suppose that the latter commute with P and Q. A realization of $Y(n)$ is given by the transfer matrix [1]

$$
\begin{equation*}
\mathcal{T}_{0}(u)=\mathcal{L}_{01}(u) \cdots \mathcal{L}_{0 N}(u) \in \operatorname{End}\left(\mathbb{C}^{n}\right) \otimes \operatorname{End}\left(\mathbb{C}^{n}\right)^{\otimes N} \tag{2.11}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{L}_{0 i}(u)=\frac{u+d_{i}}{u+d_{i}-\lambda} R_{0 i}\left(u+d_{i}\right)=\frac{u+d_{i}}{u+d_{i}-\lambda}\left(1-\frac{\lambda P_{0 i}}{u+d_{i}}\right) . \tag{2.12}
\end{equation*}
$$

The first space denoted 0 in (2.11) is called the auxiliary space. The other ones, denoted $1, \ldots, N$ and not displayed explicitly in $\mathcal{T}_{0}(u)$ for brevity, are called the quantum spaces.

In the realization (2.11) of $Y(n)$, the quantum determinant takes the following particular form:

$$
\begin{equation*}
\operatorname{qdet} \mathcal{T}(u)=\prod_{j=1}^{N} \frac{u+d_{j}}{u+d_{j}-n \lambda+\lambda} \tag{2.13}
\end{equation*}
$$

This realization allows us to obtain a realization of $\mathcal{B}(n)$ thanks to theorem 1.1 and relation (1.8)

$$
\begin{equation*}
\mathcal{S}_{0}(u)=\mathcal{T}_{0}(u) B_{0}(u) Q_{0} \mathcal{T}_{0}^{-1}(-u) Q_{0} \tag{2.14}
\end{equation*}
$$

$$
\begin{align*}
&=\frac{u+d_{1}}{u+d_{1}-\lambda}\left(1-\frac{\lambda P_{01}}{u+d_{1}}\right) \cdots \frac{u+d_{N}}{u+d_{N}-\lambda}\left(1-\frac{\lambda P_{0 N}}{u+d_{N}}\right) B_{0}(u) Q_{0} \\
& \quad \times \frac{u-d_{N}}{u-d_{N}-\lambda}\left(1-\frac{\lambda P_{0 N}}{u-d_{N}}\right) \cdots \frac{u-d_{1}}{u-d_{1}-\lambda}\left(1-\frac{\lambda P_{01}}{u-d_{1}}\right) Q_{0} \tag{2.15}
\end{align*}
$$

and one can compute

$$
\begin{align*}
& \operatorname{sdet} \mathcal{S}(u)=\theta(u) \prod_{j=1}^{N} \frac{\left(u+d_{j}\right)\left(-u+d_{j}\right)}{\left(u+d_{j}-n \lambda+\lambda\right)\left(-u+d_{j}+n \lambda-\lambda\right)} \tag{2.16}\\
&=\theta_{0}+\frac{1}{u}\left(\theta_{1}+2(n \lambda-\lambda) N \theta_{0}\right)+\frac{1}{u^{2}}\left(\theta_{2}+2(n \lambda-\lambda) N \theta_{1}+(n \lambda-\lambda)^{2} N(2 N+1) \theta_{0}\right) \\
&+\frac{1}{u^{3}}\left(\theta_{3}+2(n \lambda-\lambda) N \theta_{2}+(n \lambda-\lambda)^{2} N(2 N+1) \theta_{1}\right. \\
&\left.+(n \lambda-\lambda)^{3} \frac{2 N(N+1)(2 N+1)}{3} \theta_{0}+2 \theta_{0} \mathcal{H}\right)+O\left(\frac{1}{u^{4}}\right) \tag{2.17}
\end{align*}
$$

where

$$
\begin{equation*}
\mathcal{H}=\sum_{i=1}^{N} d_{i}^{2} \tag{2.18}
\end{equation*}
$$

and the coefficients $\theta_{j}(j=0,1,2,3)$ are given by the expansion

$$
\begin{equation*}
\theta(u)=\operatorname{sdet} B(u)=\theta_{0}+\frac{\theta_{1}}{u}+\frac{\theta_{2}}{u^{2}}+\frac{\theta_{3}}{u^{3}}+O\left(\frac{1}{u^{4}}\right) \tag{2.19}
\end{equation*}
$$

As announced earlier, we identified a central element \mathcal{H} whose interpretation as Hamiltonian will become explicit in sections 3 and 4 .

2.3. Projectors

We now turn to a crucial point in our construction. Let us define two operators

$$
\begin{align*}
& \Lambda^{(1)}=\frac{1}{N!} \prod_{j=2}^{N}\left(1+\tau^{\prime} P_{1 j} \mathcal{P}_{1 j}+\cdots+\tau^{\prime} P_{j-1, j} \mathcal{P}_{j-1, j}\right) \tag{2.20}\\
& \Lambda^{(2)}=\frac{1}{2^{N}} \prod_{j=1}^{N}\left(1+\tau^{\prime \prime} Q_{j} \mathcal{Q}_{j}\right) \tag{2.21}
\end{align*}
$$

where $\tau^{\prime}, \tau^{\prime \prime}= \pm 1$. We define $\Lambda=\Lambda^{(1)} \Lambda^{(2)}=\Lambda^{(2)} \Lambda^{(1)}$. One can check that the operators $\Lambda^{(1)}, \Lambda^{(2)}$ and Λ are projectors. Let us remark that the products in relations (2.20) and (2.21) are not necessarily ordered since the factors in each product commute with one another.

Lemma 2.1. For $1 \leqslant i<j \leqslant N$ and $1 \leqslant l \leqslant N$, one has

$$
\begin{align*}
& \left(1-\tau^{\prime} P_{i j} \mathcal{P}_{i j}\right) \Lambda^{(1)}=0 \tag{2.22}\\
& \left(1-\tau^{\prime \prime} Q_{l} \mathcal{Q}_{l}\right) \Lambda^{(2)}=0 \tag{2.23}
\end{align*}
$$

Proof. Let $\sigma \in \mathfrak{S}_{N}$. An equivalent definition of $\Lambda^{(1)}$ is

$$
\Lambda^{(1)}=\frac{1}{N!} \prod_{k=2}^{N}\left(1+\tau^{\prime} P_{\sigma(1) \sigma(k)} \mathcal{P}_{\sigma(1) \sigma(k)}+\cdots+\tau^{\prime} P_{\sigma(k-1) \sigma(k)} \mathcal{P}_{\sigma(k-1) \sigma(k)}\right)
$$

For $1 \leqslant i<j \leqslant N$, let us choose σ so that $\sigma(1)=i$ and $\sigma(2)=j$. Then, one obtains $\left(1-\tau^{\prime} \mathcal{P}_{i j} P_{i j}\right) \Lambda^{(1)}=\left(1-\tau^{\prime} \mathcal{P}_{i j} P_{i j}\right)\left(1+\tau^{\prime} \mathcal{P}_{i j} P_{i j}\right)$

$$
\begin{equation*}
\times \frac{1}{N!} \prod_{k=3}^{N}\left(1+\tau^{\prime} P_{\sigma(1) \sigma(k)} \mathcal{P}_{\sigma(1) \sigma(k)}+\cdots+\tau^{\prime} P_{\sigma(k-1) \sigma(k)} \mathcal{P}_{\sigma(k-1) \sigma(k)}\right)=0 \tag{2.24}
\end{equation*}
$$

which proves relation (2.22). Relation (2.23) is straightforward.
In the rest of this paper, we take a particular form for $B(u)$

$$
\begin{equation*}
B(u)=1+b^{\prime} \frac{Q}{u} \quad\left(b^{\prime} \in \mathbb{C}\right) . \tag{2.25}
\end{equation*}
$$

In this case, the constant coefficient θ_{0} in (2.19) is 1 . Let us now state the main theorem of this section.

Theorem 2.2. If $\beta=\tau^{\prime} \lambda$ and $b=-2 \tau^{\prime \prime} b^{\prime}$, then $\mathcal{S}(u) \Lambda$ is a realization of $\mathcal{B}(n)$ i.e. one obtains
$R_{00^{\prime}}(u-v) \mathcal{S}_{0}(u) \Lambda Q_{0} R_{00^{\prime}}(u+v) Q_{0} \mathcal{S}_{0^{\prime}}(v) \Lambda=\mathcal{S}_{0^{\prime}}(v) \Lambda Q_{0} R_{00^{\prime}}(u+v) Q_{0} \mathcal{S}_{0}(u) \Lambda R_{00^{\prime}}(u-v)$.

The Sklyanin determinant can be computed thanks to the following formula:

$$
\begin{equation*}
\operatorname{sdet}(\mathcal{S}(u) \Lambda)=(\operatorname{sdet} \mathcal{S}(u)) \Lambda \tag{2.27}
\end{equation*}
$$

Proof. Noting that Λ commutes with $R_{00^{\prime}}$ and Q_{0}, the validity of relation (2.26) is implied by

$$
\begin{equation*}
(\Lambda-1) \mathcal{S}_{0}(u) \Lambda=0 \tag{2.28}
\end{equation*}
$$

This in turn holds if

$$
\left\{\begin{array}{l}
\left(\mathcal{P}_{i, i+1}-\tau^{\prime} P_{i, i+1}\right) \mathcal{S}_{0}(u) \Lambda^{(1)}=0 \quad i=1, \ldots, N-1 \tag{2.29}\\
\left(\mathcal{Q}_{N}-\tau^{\prime \prime} Q_{N}\right) \mathcal{S}_{0}(u) \Lambda^{(2)}=0 .
\end{array}\right.
$$

Now a direct computation using the exchange relations of $\mathcal{A}(N)$ and the conditions on β and b allows one to find \mathcal{S}^{\prime} and $\mathcal{S}^{\prime \prime}$ such that

$$
\left\{\begin{array}{l}
\left(\mathcal{P}_{i, i+1}-\tau^{\prime} P_{i, i+1}\right) \mathcal{S}_{0}(u)=\mathcal{S}_{0}^{\prime}(u)\left(\mathcal{P}_{i, i+1}-\tau^{\prime} P_{i, i+1}\right) \tag{2.30}\\
\left(\mathcal{Q}_{N}-\tau^{\prime \prime} Q_{N}\right) \mathcal{S}_{0}(u)=\mathcal{S}_{0}^{\prime \prime}(u)\left(\mathcal{Q}_{N}-\tau^{\prime \prime} Q_{N}\right)
\end{array}\right.
$$

which finishes the proof of (2.28) invoking lemma 2.1. Relation (2.27) is proved using the definition (1.15) of the Sklyanin determinant and relation (2.28).

Remark. One can verify that the validity of (2.26) actually imposes the explicit form (2.25) of $B(u)$ up to a normalization and the above constraints on λ and b^{\prime}.

In a similar way, one can prove the following theorem. The latter encompasses the analogue result in [1]. Indeed, one recovers the situation of [1] by specifying a particular representation of the generators of $\mathcal{A}(N)$.

Theorem 2.3. If $\beta=\tau^{\prime} \lambda$, then $\mathcal{T}(u) \Lambda^{(1)}$ is a realization of $Y(n)$ i.e. one obtains

$$
\begin{equation*}
R_{00^{\prime}}(u-v) \mathcal{T}_{0}(u) \Lambda^{(1)} \mathcal{T}_{0^{\prime}}(v) \Lambda^{(1)}=\mathcal{T}_{0^{\prime}}(v) \Lambda^{(1)} \mathcal{T}_{0}(u) \Lambda^{(1)} R_{00^{\prime}}(u-v) \tag{2.31}
\end{equation*}
$$

The quantum determinant of $\mathcal{T}(u) \Lambda^{(1)}$ can be computed thanks to the following formula:

$$
\begin{equation*}
\operatorname{qdet}\left(\mathcal{T}(u) \Lambda^{(1)}\right)=(q \operatorname{det} \mathcal{T}(u)) \Lambda^{(1)} \tag{2.32}
\end{equation*}
$$

Proof. The proof is similar to that of theorem 2.2.

3. Hamiltonians with $\mathcal{B}(n)$ symmetry

In this section and the following one, we present the physical application of the above mathematical setting. We will work in the first quantized picture with N indistinguishable particles. Let $\left\{q_{i} \mid 1 \leqslant i \leqslant N\right\}$ be the coordinates and $\left\{s_{i} \mid 1 \leqslant i \leqslant N\right\}$ the internal degrees of freedom (or spins) of the particles. Any s_{i} takes values in $\Sigma=\left\{-\frac{n-1}{2},-\frac{n-3}{2}, \ldots, \frac{n-3}{2}, \frac{n-1}{2}\right\}$. Then, the wavefunction of the system is denoted $\phi\left(q_{1}, \ldots, q_{N} \mid s_{1}, \ldots, s_{N}\right)$.

3.1. Representation of $\mathcal{A}(N)$ and associated Hamiltonians

We represent P, Q and the generators of $\mathcal{A}(N)$ as operators on the space \mathfrak{L} of wavefunctions. This reads, for $1 \leqslant i<j \leqslant N$ and $\phi \in \mathfrak{L}$,
$\mathcal{P}_{i j} \phi\left(q_{1}, \ldots, q_{i}, \ldots, q_{j}, \ldots, q_{N} \mid s_{1}, \ldots, s_{N}\right)=\phi\left(q_{1}, \ldots, q_{j}, \ldots, q_{i}, \ldots, q_{N} \mid s_{1}, \ldots, s_{N}\right)$
$P_{i j} \phi\left(q_{1}, \ldots, q_{N} \mid s_{1}, \ldots, s_{i}, \ldots, s_{j}, \ldots, s_{N}\right)=\phi\left(q_{1}, \ldots, q_{N} \mid s_{1}, \ldots, s_{j}, \ldots, s_{i}, \ldots, s_{N}\right)$
i.e. $\mathcal{P}_{i j}$ (resp. $P_{i j}$) is the permutation operator acting on positions (resp. spins) of the i th and j th particles. And for $1 \leqslant i \leqslant N$, we define
$\mathcal{Q}_{i} \phi\left(q_{1}, \ldots, q_{i}, \ldots, q_{N} \mid s_{1}, \ldots, s_{N}\right)=\phi\left(q_{1}, \ldots, \alpha\left(q_{i}\right), \ldots, q_{N} \mid s_{1}, \ldots, s_{N}\right)$
$Q_{i} \phi\left(q_{1}, \ldots, q_{N} \mid s_{1}, \ldots, s_{i}, \ldots, s_{N}\right)=\phi\left(q_{1}, \ldots, q_{N} \mid s_{1}, \ldots, s_{i}^{*}, \ldots, s_{N}\right)$
where α is a function defining the action of \mathcal{Q}_{i} on the position of the i th particle and $*$ represents the action of Q_{i} on its spin. Since $\mathcal{Q}_{i}^{2}=1$ and $Q_{i}^{2}=1$, one obtains $\alpha\left(\alpha\left(q_{i}\right)\right)=q_{i}$ and $\left(s_{i}^{*}\right)^{*}=s_{i}$. Now, we choose d_{l} to be a Dunkl operator [14] defined as follows,
for $1 \leqslant l \leqslant N$,
$d_{l}=a\left(q_{l}\right) \frac{\partial}{\partial q_{l}}+\sum_{k=1}^{l-1} v\left(q_{l}, q_{k}\right) \mathcal{P}_{k l}-\sum_{k=l+1}^{N} v\left(q_{k}, q_{l}\right) \mathcal{P}_{l k}+\sum_{k=1, k \neq l}^{N} \bar{v}\left(q_{l}, q_{k}\right) \overline{\mathcal{P}}_{l k}+g\left(q_{l}\right) \mathcal{Q}_{l}$
where $\overline{\mathcal{P}}_{l k}=\mathcal{Q}_{l} \mathcal{Q}_{k} \mathcal{P}_{l k}$. For the product of Dunkl operators to be well defined, a, v, \bar{v}, g must be C^{∞} functions.

Theorem 3.1. For $a \neq 0$ and $A(x)=\int^{x} \frac{d y}{a(y)}$ invertible, the operators $\mathcal{P}_{i j}, \mathcal{Q}_{i}$ and d_{i} as defined in (3.1), (3.3) and (3.5) realize $\mathcal{A}(N)$ if and only if

$$
\begin{align*}
& \alpha(x)=A^{-1}(-A(x)) \tag{3.6}\\
& v(x, y)=\frac{\beta}{\mathrm{e}^{-2 \gamma(A(x)-A(y))}-1} \quad \gamma \in \mathbb{C} \tag{3.7}\\
& \bar{v}(x, y)=\frac{\beta}{1-\mathrm{e}^{2 \gamma(A(x)+A(y))}} \tag{3.8}\\
& g(x)=\frac{c-b \mathrm{e}^{-2 \gamma A(x)}}{2 \sinh (2 \gamma A(x))} \quad c \in \mathbb{C} . \tag{3.9}
\end{align*}
$$

Proof. The constraints on the functions α, a, v, \bar{v} and g arise from (2.3), (2.4) and (2.8). Starting from (2.4), the idea is to cancel the coefficients appearing in front of independent operators such as $\mathcal{P}_{i j}$ or $\mathcal{P}_{i k} \mathcal{P}_{j k}$:

$$
\begin{align*}
& a(x) \frac{\partial}{\partial x} v(x, y)+a(y) \frac{\partial}{\partial y} v(x, y)=0 \tag{3.10}\\
& -v(y, z) v(x, z)+v(x, y) v(y, z)+v(x, z) v(y, x)=0 \tag{3.11}
\end{align*}
$$

whose solution is given by

$$
v(x, y)=\frac{C}{\mathrm{e}^{-2 \gamma(A(x)-A(y))}-1} \quad C, \gamma \in \mathbb{C}
$$

and (2.3) imposes $C=\beta$. The form of α, \bar{v} and g are found in the same way. Then, a global check ensures that all the remaining relations are identically satisfied.

The Dunkl operators realized as in (3.5) are independent and from (2.4), (2.18), we have

$$
\begin{equation*}
\left[\mathcal{H}, d_{i}\right]=0 \quad \text { for } \quad i=1, \ldots, N \tag{3.12}
\end{equation*}
$$

which ensures the integrability. Then, from (2.18), we can compute

$$
\begin{align*}
& \mathcal{H}=\sum_{i=1}^{N}\left(a\left(q_{i}\right)^{2} \frac{\partial^{2}}{\partial q_{i}^{2}}+a\left(q_{i}\right) \frac{\partial a\left(q_{i}\right)}{\partial q_{i}} \frac{\partial}{\partial q_{i}}\right) \\
&+\sum_{1 \leqslant i<j \leqslant N}\left(\frac{\beta \gamma\left(\mathcal{P}_{i j}-\frac{\beta}{2 \gamma}\right)}{\sinh ^{2}\left[\gamma\left(A\left(q_{i}\right)-A\left(q_{j}\right)\right)\right]}+\frac{\beta \gamma\left(\overline{\mathcal{P}}_{i j}-\frac{\beta}{2 \gamma}\right)}{\sinh ^{2}\left[\gamma\left(A\left(q_{i}\right)+A\left(q_{j}\right)\right)\right]}\right) \\
&+\sum_{i=1}^{N}\left(\frac{\gamma(b+c)\left(\mathcal{Q}_{i}-\frac{b+c}{4 \gamma}\right)}{4 \sinh ^{2}\left[\gamma A\left(q_{i}\right)\right]}-\frac{\gamma(b-c)\left(\mathcal{Q}_{i}-\frac{b-c}{4 \gamma}\right)}{4 \cosh ^{2}\left[\gamma A\left(q_{i}\right)\right]}\right) \tag{3.13}
\end{align*}
$$

Now the constructions of the previous sections get their physical meaning. $\Lambda^{(1)}$ is the projector from \mathfrak{L} onto $\mathfrak{L}_{\tau^{\prime}}^{(1)}$, the space of globally τ^{\prime}-symmetric wavefunctions $\left(\tau^{\prime}=1\right.$ for symmetric and
$\tau^{\prime}=-1$ for antisymmetric). $\Lambda^{(2)}$ is the projector from \mathfrak{L} onto $\mathfrak{L}_{\tau^{\prime \prime}}^{(2)}$, the space of wavefunctions such that
$\phi\left(q_{1}, \ldots, \alpha\left(q_{i}\right), \ldots, q_{N} \mid s_{1}, \ldots, s_{i}^{*}, \ldots, s_{N}\right)=\tau^{\prime \prime} \phi\left(q_{1}, \ldots, q_{i}, \ldots, q_{N} \mid s_{1}, \ldots, s_{i}, \ldots, s_{N}\right)$.

And then, Λ is the projector from \mathfrak{L} onto $\mathfrak{L}_{\Lambda}=\mathfrak{L}_{\tau^{\prime}}^{(1)} \cap \mathfrak{L}_{\tau^{\prime \prime}}^{(2)}$.
Theorem 3.2. Let $\bar{P}_{i j}=Q_{i} Q_{j} P_{i j}$ and $c^{\prime}=-\frac{c \tau^{\prime \prime}}{2}$. The effective Hamiltonian, \mathcal{H}_{Λ}, restricted to \mathfrak{L}_{Λ}, reads

$$
\begin{align*}
& \mathcal{H}_{\Lambda}=\sum_{i=1}^{N}\left(a\left(q_{i}\right)^{2} \frac{\partial^{2}}{\partial q_{i}^{2}}+a\left(q_{i}\right) \frac{\partial a\left(q_{i}\right)}{\partial q_{i}} \frac{\partial}{\partial q_{i}}\right) \\
&+\sum_{1 \leqslant i<j \leqslant N}\left(\frac{\gamma \lambda\left(P_{i j}-\frac{\lambda}{2 \gamma}\right)}{\sinh ^{2}\left[\gamma\left(A\left(q_{i}\right)-A\left(q_{j}\right)\right)\right]}+\frac{\gamma \lambda\left(\bar{P}_{i j}-\frac{\lambda}{2 \gamma}\right)}{\sinh ^{2}\left[\gamma\left(A\left(q_{i}\right)+A\left(q_{j}\right)\right)\right]}\right) \\
&+\sum_{i=1}^{N}\left(-\frac{\gamma\left(b^{\prime}+c^{\prime}\right)\left(Q_{i}+\frac{b^{\prime}+c^{\prime}}{2 \gamma}\right)}{2 \sinh ^{2}\left[\gamma A\left(q_{i}\right)\right]}+\frac{\gamma\left(b^{\prime}-c^{\prime}\right)\left(Q_{i}+\frac{b^{\prime}-c^{\prime}}{2 \gamma}\right)}{2 \cosh ^{2}\left[\gamma A\left(q_{i}\right)\right]}\right) \tag{3.15}
\end{align*}
$$

and admits the reflection algebra as symmetry algebra. This ensures in particular that it is integrable.

Proof. \mathcal{H}_{Λ} is actually $\mathcal{H} \Lambda$ for $\beta=\tau^{\prime} \lambda$ and $b=-2 \tau^{\prime \prime} b^{\prime}$. Indeed, the explicit form above is obtained for the values of β and b just specified and substituting \mathcal{P} and \mathcal{Q} for P and Q in (3.13) accordance to (2.22), (2.23). When one restricts to $\mathfrak{L}_{\Lambda}, \Lambda$ is no longer required on the right-hand side of (3.15). Then, relation (2.17) and theorem 2.2 imply that \mathcal{H}_{Λ} admits the reflection algebra symmetry.

Integrability is proved upon expanding the Sklyanin determinant. One can show that it can be written as
$\operatorname{sdet}(\mathcal{S}(u) \Lambda)=\Lambda+\sum_{k=0}^{+\infty} \frac{1}{u^{k+1}}\left[\lambda(n-1) \sum_{i=1}^{N}\left(1+(-1)^{k}\right) d_{i}^{k}+G_{k}\left(d_{1}, \ldots, d_{N}\right)\right] \Lambda$
where G_{k} is a N-variable polynomial of highest degree $k-1$. We denote by \mathcal{I}_{k} the term between brackets in (3.16). Since the coefficients of the Sklyanin determinant are central elements, one deduces that

$$
\begin{equation*}
\left[\mathcal{I}_{k} \Lambda, \mathcal{I}_{l} \Lambda\right]=0 \quad \text { and } \quad\left[\mathcal{I}_{k} \Lambda, \mathcal{H}_{\Lambda}\right]=0 \quad \forall k, l \in \mathbb{Z}_{\geqslant 0} \tag{3.17}
\end{equation*}
$$

and by paying attention to the terms of highest order in the partial derivatives in $\mathcal{I}_{k} \Lambda$, it is readily seen that $\left\{\mathcal{I}_{2 k} \Lambda\right\}_{1 \leqslant k \leqslant N}$ are independent, which proves the integrability.

3.2. Physical Hamiltonians and gauge fixing

We still have to refine the form of the above Hamiltonian \mathcal{H}_{Λ} so that its physical interpretation will be easier. The aim is to recover the usual physical Hamiltonian in units of $\hbar^{2} / 2 m$

$$
\begin{equation*}
H=-\sum_{i=1}^{N} \frac{\partial^{2}}{\partial z_{i}^{2}}+V\left(z_{1}, \ldots, z_{N}\right) \tag{3.18}
\end{equation*}
$$

for some potential V. This can be achieved by performing a gauge transformation $\mu(\mathbf{q})$ and a change of variables $\mathbf{q}=\xi(\mathbf{z})$ with $\mathbf{q}=\left(q_{1}, \ldots, q_{N}\right), \mathbf{z}=\left(z_{1}, \ldots, z_{N}\right)$

$$
\begin{equation*}
H=\left.\mu(\mathbf{q}) \mathcal{H}_{\Lambda} \frac{1}{\mu(\mathbf{q})}\right|_{\mathbf{q}=\xi(\mathbf{z})} \tag{3.19}
\end{equation*}
$$

We note that this does not affect the results about the symmetry and the integrability.
To obtain (3.18) from \mathcal{H}_{Λ} given in (3.15), the suitable transformations are

$$
\begin{align*}
& \xi(\mathbf{z})=\left(A^{-1}\left(\mathrm{i} z_{1}\right), \ldots, A^{-1}\left(\mathrm{i} z_{N}\right)\right) \tag{3.20}\\
& \mu(\mathbf{q})=\prod_{1 \leqslant i \leqslant N} \sqrt{a\left(q_{i}\right)} \tag{3.21}
\end{align*}
$$

Theorem 3.3. Under the transformations (3.20), (3.21), the potential V in (3.18) splits into an external potential, U, and a spin potential, $V_{\text {spin }}$,

$$
\begin{equation*}
V(\mathbf{z})=V_{\mathrm{spin}}(\mathbf{z})+\sum_{k=1}^{N} U\left(z_{k}\right) \tag{3.22}
\end{equation*}
$$

with

$$
\begin{align*}
V_{\text {spin }}(\mathbf{z})=- & \sum_{1 \leqslant i<j \leqslant N}\left(\frac{\gamma \lambda\left(P_{i j}-\frac{\lambda}{2 \gamma}\right)}{\sin ^{2}\left[\gamma\left(z_{i}-z_{j}\right)\right]}+\frac{\gamma \lambda\left(\bar{P}_{i j}-\frac{\lambda}{2 \gamma}\right)}{\sin ^{2}\left[\gamma\left(z_{i}+z_{j}\right)\right]}\right) \\
& +\sum_{i=1}^{N}\left(\frac{\gamma\left(b^{\prime}+c^{\prime}\right)\left(Q_{i}+\frac{b^{\prime}+c^{\prime}}{2 \gamma}\right)}{2 \sin ^{2}\left(\gamma z_{i}\right)}+\frac{\gamma\left(b^{\prime}-c^{\prime}\right)\left(Q_{i}+\frac{b^{\prime}-c^{\prime}}{2 \gamma}\right)}{2 \cos ^{2}\left(\gamma z_{i}\right)}\right) \tag{3.23}
\end{align*}
$$

and

$$
\begin{equation*}
U(x)=\frac{1}{4} a^{\prime}\left(A^{-1}(\mathrm{i} x)\right)^{2}-\frac{1}{2} a\left(A^{-1}(\mathrm{i} x)\right) a^{\prime \prime}\left(A^{-1}(\mathrm{i} x)\right) \tag{3.24}
\end{equation*}
$$

where $a^{\prime}(x)=\mathrm{d} a(x) / \mathrm{d} x$.
Proof. By direct computation
To complete our discussion, we have to specify how the wavefunction and the relations (3.1), (3.3) transform under the change of variables (3.20). The wavefunction ϕ^{\prime} on which H acts is given by

$$
\begin{equation*}
\phi^{\prime}\left(z_{1}, \ldots, z_{N} \mid s_{1}, \ldots, s_{N}\right)=\phi\left(A^{-1}\left(\mathrm{i} z_{1}\right), \ldots, A^{-1}\left(\mathrm{i} z_{N}\right) \mid s_{1}, \ldots, s_{N}\right) \tag{3.25}
\end{equation*}
$$

It is then straightforward to see that the action of \mathcal{P} is unchanged
$\mathcal{P}_{i j} \phi^{\prime}\left(z_{1}, \ldots, z_{i}, \ldots, z_{j}, \ldots, z_{N} \mid s_{1}, \ldots, s_{N}\right)=\phi^{\prime}\left(z_{1}, \ldots, z_{j}, \ldots, z_{i}, \ldots, z_{N} \mid s_{1}, \ldots, s_{N}\right)$
and, noting that $\alpha\left(A^{-1}(\mathrm{i} z)\right)=A^{-1}(-\mathrm{i} z)$, the action of \mathcal{Q} reads
$\mathcal{Q}_{i} \phi^{\prime}\left(z_{1}, \ldots, z_{i}, \ldots, z_{N} \mid s_{1}, \ldots, s_{N}\right)=\phi^{\prime}\left(z_{1}, \ldots,-z_{i}, \ldots, z_{N} \mid s_{1}, \ldots, s_{N}\right)$
i.e. it is independent of α when we work with the variables z_{i}. For wavefunctions in \mathfrak{L}_{Λ}, this implements the Neumann (resp. Dirichlet) boundary condition for $\tau^{\prime \prime}=1$ (resp. $\tau^{\prime \prime}=-1$).

We can give some comments on the form of the potentials. The term $\gamma \lambda\left(P_{i j}-\frac{\lambda}{2 \gamma}\right) /$ $\left(\sin \left[\gamma\left(z_{i}-z_{j}\right)\right]\right)^{2}$ expresses the usual two-body interaction between the i th and j th particles and does not break translation invariance as expected. The additional terms can be better interpreted if one imagines a 'mirror' sitting at the origin $z=0$. Then, the term $\gamma \lambda\left(P_{i j}-\frac{\lambda}{2 \gamma}\right) /\left(\sin \left[\gamma\left(z_{i}+z_{j}\right)\right]\right)^{2}$ represents the two-body interaction between the i th particle and the 'mirror-image' of the j th particle. And the remaining terms involving only z_{i} accounts for the potential of the 'impurity' at the origin. These terms clearly violate translation invariance. Indeed, defining the total momentum as usual

$$
\begin{equation*}
\mathcal{I}=-\mathrm{i} \sum_{i=1}^{N} \frac{\partial}{\partial z_{i}} \tag{3.27}
\end{equation*}
$$

it is readily seen that

$$
\begin{equation*}
[\mathcal{I}, H] \neq 0 \tag{3.28}
\end{equation*}
$$

We want to emphasize that this interpretation in terms of an impurity sitting at the origin and of a 'mirror-image' of the system is possible thanks to (3.26), which is actually related to the fact that the Hamiltonian H is invariant under the space reflections $z_{i} \rightarrow-z_{i}, i=1, \ldots, N$.

3.3. Examples

In all the above constructions, we have some freedom with the function a and the constants γ and c^{\prime}. In this section, we use this freedom to exhibit particular Hamiltonians admitting the reflection algebra as symmetry algebra.

We work with the Hamiltonian (3.18) and from the previous section, we know that we control the external potential U thanks to a irrespective of $V_{\text {spin }}$. Thus, we suppose that the function a is constant so that the scalar external potential, U, vanishes.

3.3.1. B_{N}-type nonlinear Schrödinger Hamiltonian. Let

$$
\begin{equation*}
\gamma=\mathrm{i} \gamma^{\prime} \quad \lambda=\mathrm{i} g \quad b^{\prime}=-\mathrm{i} b_{1} \quad \text { where } \quad \gamma^{\prime}, g, b_{1} \in \mathbb{R} \tag{3.29}
\end{equation*}
$$

Taking the limit $\gamma^{\prime} \rightarrow+\infty$ in (3.23) in the sense of distributions, we obtain
$H_{\mathrm{NLS}}=-\sum_{k=1}^{N} \frac{\partial^{2}}{\partial z_{k}^{2}}+2 g \sum_{1 \leqslant k<l \leqslant N}\left[\delta\left(z_{k}-z_{l}\right) P_{k l}+\delta\left(z_{k}+z_{l}\right) \bar{P}_{k l}\right]+2 b_{1} \sum_{k=1}^{N} \delta\left(z_{k}\right) Q_{k}$.
We know from the above results that this Hamiltonian admits the reflection algebra symmetry and is integrable. Let us note that when acting on \mathfrak{L}_{Λ}, we can drop the spin operators $P_{i j}, \bar{P}_{i j}, Q_{i}$ in this particular case due to the presence of the delta functions
$H_{\mathrm{NLS}}=-\sum_{k=1}^{N} \frac{\partial^{2}}{\partial z_{k}^{2}}+2 g \tau^{\prime} \sum_{1 \leqslant k<l \leqslant N}\left[\delta\left(z_{k}-z_{l}\right)+\delta\left(z_{k}+z_{l}\right)\right]+2 b_{1} \tau^{\prime \prime} \sum_{k=1}^{N} \delta\left(z_{k}\right)$.
This is the Hamiltonian of a system of N bosonic $\left(\tau^{\prime}=1\right.$) or fermionic ($\tau^{\prime}=-1$) particles interacting through a delta potential with coupling constant g in the presence of a delta-type impurity sitting at the origin.
3.3.2. B_{N} trigonometric/hyperbolic Sutherland model with spin. To recover the known integrable Hamiltonian of the B_{N} trigonometric Sutherland model with spin [15], we take particular values of the constants present in (3.18)-(3.23)
$\gamma=1 \quad \lambda=2 g \quad b^{\prime}+c^{\prime}=-2 b_{1} \quad$ and $\quad b^{\prime}-c^{\prime}=-2 b_{2} \quad$ where $g, b_{1}, b_{2} \in \mathbb{R}$.
Thus, the Hamiltonian (3.18) becomes

$$
\begin{gather*}
H_{\mathrm{BtS}}=-\sum_{i=1}^{N} \frac{\partial^{2}}{\partial z_{i}^{2}}-2 g \sum_{1 \leqslant i<j \leqslant N}\left(\frac{\left(P_{i j}-g\right)}{\sin ^{2}\left(z_{i}-z_{j}\right)}+\frac{\left(\bar{P}_{i j}-g\right)}{\sin ^{2}\left(z_{i}+z_{j}\right)}\right) \\
-\sum_{i=1}^{N}\left(\frac{b_{1}\left(Q_{i}-b_{1}\right)}{\sin ^{2}\left(z_{i}\right)}+\frac{b_{2}\left(Q_{i}-b_{2}\right)}{\cos ^{2}\left(z_{i}\right)}\right) \tag{3.33}
\end{gather*}
$$

g is the coupling constant and b_{1}, b_{2} parametrize the coupling with the impurity. From the general results of the previous sections, we know that the reflection algebra is the symmetry of the Hamiltonian (3.33).

The Hamiltonian of B_{N} hyperbolic Sutherland model with spin [12] is obtained by setting $\gamma=i \quad \lambda=2 \mathrm{i} g \quad b^{\prime}+c^{\prime}=-2 \mathrm{i} b_{1} \quad$ and $\quad b^{\prime}-c^{\prime}=2 \mathrm{i} b_{2} \quad$ where $g, b_{1}, b_{2} \in \mathbb{R}$
and it takes the same form as (3.33) but for the trigonometric functions replaced by the corresponding hyperbolic functions.

4. Hamiltonians with $Y(n)$ symmetry

In this section, we take advantage of theorem 2.3 and just adapt all our machinery to exhibit a general integrable Hamiltonian with Yangian symmetry which, once particularized, reproduces already known systems such as nonlinear Schrödinger and A_{N} Sutherland models with spin.

4.1. Representation of $\widetilde{\mathcal{A}}(N)$ and associated Hamiltonians

It is easy to see that $\sum_{i=1}^{N} d_{i}^{2}$ also appears in the expansion of $\operatorname{qdet} \mathcal{T}(u)$ in (2.13). As is customary in the literature [$3,16,17$], the starting point is a representation of the degenerate affine Hecke algebra, $\widetilde{\mathcal{A}}(N)$. We keep (3.1) and (3.2) and take for the Dunkl operator

$$
\begin{equation*}
d_{l}=a\left(q_{l}\right) \frac{\partial}{\partial q_{l}}+\sum_{k=1}^{l-1} v\left(q_{l}, q_{k}\right) \mathcal{P}_{k l}-\sum_{k=l+1}^{N} v\left(q_{k}, q_{l}\right) \mathcal{P}_{l k} \tag{4.1}
\end{equation*}
$$

At this stage, we can reproduce along the same line the arguments of section 3 to state the following theorems whose proofs are similar to that of theorems 3.1, 3.2 and will not be given here.

Theorem 4.1. For $a \neq 0$ and $A(x)=\int^{x} \frac{d y}{a(y)}$ invertible, the operators $\mathcal{P}_{i j}$ and d_{i} as defined in (3.1) and (4.1) realize $\widetilde{\mathcal{A}}(N)$ if and only if

$$
\begin{equation*}
v(x, y)=\frac{\beta}{\mathrm{e}^{-2 \gamma(A(x)-A(y))}-1} \quad \gamma \in \mathbb{C} . \tag{4.2}
\end{equation*}
$$

Again, we can construct the effective Hamiltonian $\widetilde{\mathcal{H}}_{\Lambda^{(1)}}$ whose properties are gathered in:
Theorem 4.2. When restricted to $\mathfrak{L}_{\tau^{\prime}}^{(1)}$, the effective Hamiltonian
$\tilde{\mathcal{H}}_{\Lambda^{(1)}}=\sum_{i=1}^{N}\left(a\left(q_{i}\right)^{2} \frac{\partial^{2}}{\partial q_{i}^{2}}+a\left(q_{i}\right) \frac{\partial a\left(q_{i}\right)}{\partial q_{i}} \frac{\partial}{\partial q_{i}}\right)+\sum_{1 \leqslant i<j \leqslant N}\left(\frac{\gamma \lambda\left(P_{i j}-\frac{\lambda}{2 \gamma}\right)}{\sinh ^{2}\left[\gamma\left(A\left(q_{i}\right)-A\left(q_{j}\right)\right)\right]}\right)$
admits the Yangian symmetry and is integrable.
Now, performing the transformations (3.20), (3.21) on $\widetilde{\mathcal{H}}_{\Lambda^{(1)}}$ we obtain the following physical Hamiltonian:

$$
\begin{equation*}
\tilde{H}=-\sum_{i=1}^{N} \frac{\partial^{2}}{\partial z_{i}^{2}}+\tilde{V}_{\text {spin }}(\mathbf{z})+\sum_{i=1}^{N} U\left(z_{i}\right) \tag{4.4}
\end{equation*}
$$

with U given in (3.24) and

$$
\begin{equation*}
\tilde{V}_{\text {spin }}(\mathbf{z})=-\sum_{1 \leqslant i<j \leqslant N} \frac{\gamma \lambda\left(P_{i j}-\frac{\lambda}{2 \gamma}\right)}{\sin ^{2}\left[\gamma\left(z_{i}-z_{j}\right)\right]} . \tag{4.5}
\end{equation*}
$$

Remark. In the expansion of $\operatorname{qdet} \mathcal{T}(u)$ in (2.13), it is easy to see that there appears the operator

$$
\begin{equation*}
\sum_{i=1}^{N} d_{i}=\sum_{i=1}^{N} a\left(q_{i}\right) \frac{\partial}{\partial q_{i}} . \tag{4.6}
\end{equation*}
$$

Assuming that a is constant and performing the transformations (3.20), (3.21), (4.6) becomes \mathcal{I} given in (3.27). We then conclude that \mathcal{I} commutes with our general Hamiltonian \widetilde{H} so that the system is translation invariant. In particular, this shows that the systems we will consider in the following section with Yangian symmetry are translation invariant as expected.

4.2. Examples

Using the freedom on a and γ in exactly the same fashion as in section 3.3, we show that the Hamiltonian (4.4) generalizes known Hamiltonians for which the Yangian symmetry and the integrability had already been proved:

- Nonlinear Schrödinger Hamiltonian [3] ($\left.\gamma=\mathrm{i} \gamma^{\prime}, \lambda=\mathrm{i} g, \gamma^{\prime}, g \in \mathbb{R}, \gamma^{\prime} \rightarrow+\infty\right)$

$$
\begin{equation*}
\widetilde{H}_{\mathrm{NLS}}=-\sum_{k=1}^{N} \frac{\partial^{2}}{\partial z_{k}^{2}}+2 g \tau^{\prime} \sum_{1 \leqslant k<l \leqslant N} \delta\left(z_{k}-z_{l}\right) \tag{4.7}
\end{equation*}
$$

- A_{N} trigonometric Sutherland model with spin $[18,19](\gamma=1, \lambda=2 g, g \in \mathbb{R})$

$$
\begin{equation*}
\widetilde{H}_{A t S}=-\sum_{i=1}^{N} \frac{\partial^{2}}{\partial z_{i}^{2}}-2 g \sum_{1 \leqslant i<j \leqslant N}\left(\frac{\left(P_{i j}-g\right)}{\sin ^{2}\left(z_{i}-z_{j}\right)}\right) \tag{4.8}
\end{equation*}
$$

- A_{N} hyperbolic Sutherland model with spin $[18,19](\gamma=\mathrm{i}, \lambda=2 \mathrm{i} g, g \in \mathbb{R})$

$$
\begin{equation*}
\widetilde{H}_{A h S}=-\sum_{i=1}^{N} \frac{\partial^{2}}{\partial z_{i}^{2}}-2 g \sum_{1 \leqslant i<j \leqslant N}\left(\frac{\left(P_{i j}-g\right)}{\sinh ^{2}\left(z_{i}-z_{j}\right)}\right) . \tag{4.9}
\end{equation*}
$$

5. Conclusion and outlooks

Starting from a representation of the extended degenerate affine Hecke algebra in terms of operators acting on wavefunctions, our main results are the construction of a general N-particle Hamiltonian and the proof that it admits the reflection algebra symmetry (theorems 2.2 and 3.2). This ensures in particular its integrability. The Yangian counterpart of this procedure gives back well-known results.

The physical investigation of this Hamiltonian shows that it is invariant under space reflections so that we considered wavefunctions whose behaviour under the action of the operator \mathcal{Q}_{i} is dictated by a parameter $\tau^{\prime \prime}= \pm 1$. This amounts to encoding a Neumann or Dirichlet boundary condition at $z=0$. However, one sees that the 'mirror-image' of the system on the half-line is relevant and cannot be neglected if one wants to maintain the usual nontrivial two-body interactions. Of course, all this applies to the already known systems to which our general Hamiltonian reduces in appropriate limits.

This brings us to the interesting issue of diagonalizing the Hamiltonian H using available results for reflection algebras. This would provide the spectrum for apparently distinguished models (such as B_{N}-type NLS or B_{N} trigonometric/hyperbolic Sutherland models), with boundary, unified by the Hamiltonian H.

Acknowledgments

We warmly thank D Arnaudon, L Frappat and E Ragoucy for helpful discussions and advice.

References

[1] Bernard D, Gaudin M, Haldane F D M and Pasquier V 1993 Yang-Baxter equation in spin chains with long range interactions J. Phys. A: Math. Gen. 265219 (Preprint hep-th/9301084)
[2] Hikami K 1995 Symmetry of the Calogero model confined in the harmonic potential-Yangian and W algebra J. Phys. A: Math. Gen. 28131
[3] Murakami S and Wadati M 1996 Connection between Yangian symmetry and the quantum inverse scattering method J. Phys. A: Math. Gen. 297903
[4] Mintchev M, Ragoucy E, Sorba P and Zaugg Ph 1999 Yangian symmetry in the nonlinear Schrödinger hierarchy J. Phys. A: Math. Gen. 325885
[5] Sklyanin E K 1988 Boundary conditions for integrable quantum systems J. Phys. A: Math. Gen. 212375
[6] Drinfeld V G 1985 Hopf algebras and the quantum Yang-Baxter equation Sov. Math-Dokl. 32254
[7] Faddeev L D, Reshetikhin N Yu and Takhtajan L A 1990 Quantization of Lie groups and Lie algebras Leningr. Math. J. 1193
[8] Molev A, Nazarov M and Olshanski G 1996 Yangians and classical Lie algebras Russ. Math. Surv. 51205 (Preprint hep-th/9409025)
[9] Molev A I 2003 Yangians and their applications Handbook of Algebra vol 3 (Amsterdam: Elsevier) pp 907-59
[10] Bernard D, Pasquier V and Serban D 1995 Exact solution of long-range interacting spin chains with boundaries Europhys. Lett. (Preprint hep-th/9501044)
[11] Molev A I and Ragoucy E 2002 Representations of reflection algebras Rev. Math. Phys. 14317
[12] Finkel F, Gómez-Ullate D, González-López A, Rodríguez M A and Zhdanov R 2003 On the Sutherland spin model of B_{N} type and its associated spin chain Commun. Math. Phys. 233191 (Preprint hep-th/0202080)
[13] Drinfeld V G 1986 Degenerate affine Hecke algebras and Yangians Funct. Anal. Appl. 2062
[14] Dunkl C F 1989 Differential-difference operators associated to reflection groups Trans. Am. Math. Soc. 311167
[15] Finkel F, Gómez-Ullate D, González-López A, Rodríguez M A and Zhdanov R 2001 New spin CalogeroSutherland models related to B_{N}-type Dunkl operators Nucl. Phys. B 613472 (Preprint hep-th/0103190)
[16] Polychronakos A P 1992 Exchange operator formalism for integrable systems of particles Phys. Rev. Lett. 69 703
[17] Brink L, Hansson T H and Vasiliev M A 1992 Explicit solution to the N-body Calogero problem Phys. Lett. B 286109
[18] Minahan J A and Polychronakos A P 1993 Integrable systems for particles with internal degrees of freedom Phys. Lett. B 302265 (Preprint hep-th/9206046)
[19] Finkel F, Gómez-Ullate D, González-López A, Rodríguez M A and Zhdanov R $2001 A_{N}$-type Dunkl operators and new spin Calogero-Sutherland models Commun. Math. Phys. 221477 (Preprint hep-th/0102039)

